Institute for Technology and Resources Management in the Tropics and Subtropics



# **Project III**

Model showing the dependency of the loss of buying power of a standard family caused by rising costs for energy

Name: Fabian Eickmeier

Enrolment Number: 11152769

E-Mail: fabian.eickmeier@smail.th-koeln.de

Name: Iván Segura Rodríguez

Enrolment Number: 11152375

E-Mail: ivan.segura\_rodriguez@th-koeln.de

Name: Bala Subramanyam Panchangula Chinna

Enrolment Number: 11152408

E-Mail: bala\_subramanyam.panchagnula\_chinna@smail.th-koeln.de

Name: Souha Sayhi Enrolment Number: 11152325

E-Mail: sayhi.souha@smail.th-koeln.de

Name: Bit Chan Choi Enrolment Number: 11146610

E-Mail: <u>bit\_chan.choi@smail.th-koeln.de</u>

Course: P1170 - Project III

Examiner: Prof. Dr. Ulrich Daldrup

Prof. Dr. Ramchandra Bhandari

Date of Submission: 17<sup>th</sup> February 2023

Institute for Technology and Resources Management in the Tropics and Subtropics



### **Abstract**

The aim of this report is an analysis of how deeply a rise in energy cost affects a standard German four-person household by developing a tool that can be used in an uncomplicated way to estimate the annual expenditures. By entering the current electricity, gas, gasoline and diesel prices for a household, the tool presents the corresponding yearly costs in total as well as divided by product groups. To do so, a detailed breakdown of the energy consumption of a four-person household is conducted. This breakdown includes the obvious energy applications in a household, like the refrigerator or lighting, but also an analysis of the hidden energy costs in day-to-day consumption goods. To decide which goods are to be taken, the German Consumer Price Index is used.



# **Table of Contents**

| Abstract                             | 11  |
|--------------------------------------|-----|
| Table of Contents                    | III |
| Table of Figures                     | IV  |
| Table of Tables                      |     |
| Introduction                         | 5   |
| Background and Problem/ Research Gap | 5   |
| Objectives                           | 5   |
| Scope and Structure                  | 6   |
| Conceptual Frame                     | 7   |
| Literature Review                    | 7   |
| Choice of Building Blocks            | 7   |
| Building Block 1: Model Debate       | 7   |
| Building Block 2: Theory Debate      | 8   |
| Synthesis                            | 8   |
| Methodology                          | 9   |
| Data Needs                           | 9   |
| Data Acquisition Methods             | 9   |
| Data Analysis Methods                | 9   |
| Assumptions                          | 9   |
| Limits                               | 11  |
| Case Study                           | 12  |
| Results and Discussion               | 13  |
| Conclusion and Recommendations       | 16  |
| Bibliography                         |     |
| Annex                                | 19  |

Institute for Technology and Resources Management in the Tropics and Subtropics



# Table of Figures

| Figure 1 - Price Development for Energy                                      | 5  |
|------------------------------------------------------------------------------|----|
| Figure 2 - Example of the Calculation Tool                                   | 6  |
| Figure 3 - Cost distribution between the different categories                | 13 |
| Figure 4 - Average Household Income vs Total Annual Energy Costs (2014-2022) | 14 |
|                                                                              |    |
| Table of Tables                                                              |    |
| Table 1 - Energy Resources and their Breaking Down per Category              | 14 |
| Table 2 - Comparison of the three Scenarios                                  | 15 |

#### Introduction

### Background and Problem/ Research Gap

Since the beginning of 2022 and with the start of the Russian attack on Ukraine, prices are skyrocketing. However, the war is more like a trigger than the actual reason for the enormous increase in prices. As Figure 1 - Price Development for Energy shows, the energy prices for the end-users were rising for 22,5% in 2022 compared to 2021 (Bundesregierung, 2022) (DESTATIS, www.destatis.de, 2022). But the simple consideration to multiply the risen cost with the standard electricity use of a German household falls too short. There are also price increases in consumption goods like food or beverages, in clothing and services. For that reason, it is necessary to find out the amount that energy costs have in these products to also assess the rise in hidden energy costs that every household in Germany experiences.

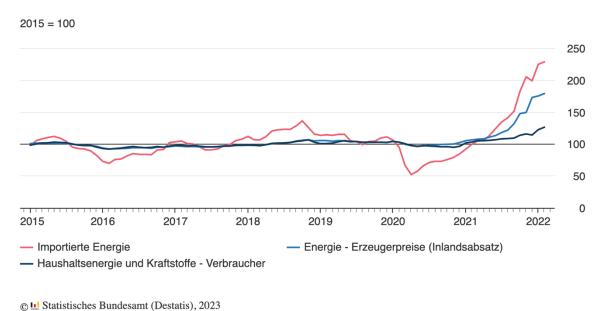



Figure 1 - Price Development for Energy (Bundesregierung, 2022) (DESTATIS, www.destatis.de, 2022)

#### **Objectives**

This research paper's objective is to define the combined increment of expenditure of visible energy costs and hidden energy costs. The aim is to create a simple tool (Figure 2 - Example of the Calculation T) to compare how much the annual cost for energy rises with a given price of electricity, gas, gasoline and diesel. The tool will then display the total annual costs, the annual costs for direct electrical consumption in the household, the yearly costs of gas, the yearly costs for energy that is hidden in clothing, the yearly cost of energy that is hidden in services, the yearly energy cost due to mobility, the annual hidden energy costs of fresh foods

as well as the annual cost for energy in manufactured foods and beverages. At last step, the percentage of energy cost of the total annual net income is calculated, to set the findings in relation.

In the end, it shows how the increment in energy cost does not only affect the direct bill of the electricity and gas provider, as well as the cost for gasoline, but it affects every part of consumption that a household has. For that reason, a more holistic approach is used to identify the full cost increment.

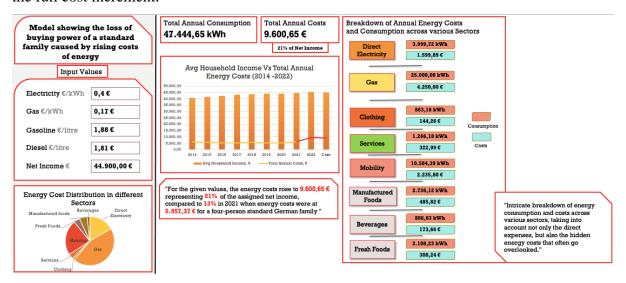



Figure 2 - Example of the Calculation Tool

#### Scope and Structure

To fit the scope of this research paper to the workload of the module as well as the time frame of one semester, it was decided to focus on the most important energy consumptions that a private household in Germany has. To back this up, the Consumer Price Index (CPI) for Germany was used (DESTATIS, 2019). Based on it, it was possible to create a weighting of goods and decide which product, service, or consumable to put into the research and which one to leave out. This work is about building a foundation for possible further research work.

For this case study, an average four-person household was chosen to be analyzed. Besides that, for many of the calculations, assumptions had to be made which will be explained in the annex to create a maximum of transparency.

The tasks were divided among group members according to the defined categories in order that every member of the group could work on detail in his/her category. This approach was decided because it gave the maximum level of knowledge per part, instead of all members working on the same part.

### Conceptual Frame

#### Literature Review

The literature review showed that in the current discussion there is a lack of holistic approaches to the topic of energy costs. Even though there is a huge amount of quantitative data about energy consumption, energy prices, average consumption of different models like single-households, two-person or four-person households, the difference between free standing houses and apartment houses, the average kilometer travelled per person, etc., there is almost no data on hidden energy costs like in food, clothes, beverages or services like restaurants or mechanics.

#### Choice of Building Blocks

Based on the previous section, three different building blocks were distinguished for this research paper. In the first building block, the model that is chosen for this research is defined. The second building block defines the average standard consumption of the modelled household in combination with assumptions that are made regarding consumption patterns. The third building block is an analysis of hidden energy costs in consumption goods, service goods and clothing.

#### Building Block 1: Model Debate

For modeling, we decided to take a German standard four-person household. The household is a family with two children that still go to school. The family is living in a free-standing house and owns two cars. Both parents are working and get to work by car. The family is going on vacation twice a year in summer and winter. The modeled family is earning a combined annual Average Brut Income of 56.580,00€ (DESTATIS, Laufende Wirtschaftsrechnungen, 2021).

The next step is defining the household to be analyzed and its consumption patterns. Here a combination of qualitative data on German household consumption with assumptions, based on literature, made to fill the information gaps is used to model an authentic consumption overview.

After defining consumption patterns, that include food, beverages, clothing, services, and mobility, an analysis of hidden energy costs is made to detect the factual energy costs in several goods of daily usage.

Institute for Technology and Resources Management in the Tropics and Subtropics Technology Arts Sciences TH Köln

#### Building Block 2: Theory Debate

This paper is based on quantitative data to find out about consumption patterns and consumption behaviors of German households. For data collection, governmental and scientific report data is collected as well as provider or producer data. A standard family is composed based of statistical data combined with assumptions listed in this report.

To process the data, mathematical tables are designed to on the one hand show clearly all the applications, products, and services that are considered and on the other hand to give a detailed information about the annual consumption of every specific product as well as a combined consumption quantity of the different product groups. The final outcome of mathematical tables was an algorithm showing the effect of energy unit prices as input on the family income and on its purchase power in particular.

#### **Synthesis**

Combining the modeling and the theoretical approach, the combined energy consumption of a standard German four-person household is estimated. The combined consumption is composed of the direct energy consumption of the household like electric appliances, gas for heating or gasoline for individual mobility as well as hidden consumption in fresh or manufactured food, in beverages, in clothing or in services.

For the calculation of direct consumption, only the consumed quantity of energy is considered. This refers to electric applications, gas consumption and individual mobility by car. Here, the energy used to manufacture for example the car, refrigerator or heating system is not considered. Only the amount of energy in kWh of electricity, gas, and gasoline.

For the product categories fresh foods, manufactured foods, beverages, services and clothing the approach differs. In fact, the consumption of the whole good or service is assumed. Because of that, the amount of energy to produce and transport the good per unit is calculated and this amount is then accounted as consumed by the household.

### Methodology

#### **Data Needs**

To conduct this research, it is necessary to have detailed information on the standard four-person household in Germany in means of consumption as well as standard of living, income, and behavioral patterns. Furthermore, information about the share of costs that go back to energy in everyday consuming products, clothes and services must be determined. When no scientific source is available, these gaps in scientific data must be filled by accountable journalistic data or producer/provider information. If none of these are available, assumptions must be made to finalize specific calculations.

#### Data Acquisition Methods

For data acquisition, secondary quantitative data is used. The highest priority lies on reports by official sources like governmental institutions, accountable NGOs or national providers of energy. Literature search is done online.

#### Data Analysis Methods

The analysis of data is done in the tables designed for this research paper. The structure of analysis uses the following steps:

- 1. Acquisition of data.
- 2. First processing of data, detection of data holes.
- 3. Filling the data holes with assumption if needed.
- 4. Application of the researched energy consumption on a defined consumption quantity that is defined for that specific good.
- 5. Combination of all goods or services in a specific product group to a total value for that product group.
- 6. Implementing the calculated values to the tool on the front page to feed into the total annual burden of a household.

#### Assumptions

To estimate the energy consumption of a household, two kinds of energy were considered: direct and hidden (or embodied). In the case of the study, we assumed that direct energy refers to the use of electric appliances in the house, natural gas for heating purposes and gasoline

ITT
Institute for Technology and

Institute for Technology and Resources Management in the Tropics and Subtropics

consumption for mobility. For electricity and gas, the energy requirements through the year of different technologies were considered. For mobility, an evaluation of mobility patterns was conducted, assuming two gasoline cars and their use for applications such as work, education, shopping, personal business, and leisure. All assumptions made and data used regarding direct energy consumption behavior for a four-person German standard household are shown in the Annex.

The hidden energy is considered as the required sum of energy to produce a good or service consumed by the standard family. We assumed that main hidden energy consumptions are part of four categories: food (fresh and manufactured), beverages, clothing and services. For each category, different products or services were identified using the German CPI. Afterwards the quantity of energy required to produce that specific good is calculated. Then, it was possible to estimate the quantity of energy required for each unit of product or service, considering different types of energy. The quantity of embodied energy consumed by the standard family in a year, therefore, is the product of the quantity of energy required to produce these consumables and the yearly consumption of them. Yearly consumption was obtained using data from German database Statista of the Statistical Department (Statistisches Bundesamt) (DESTATIS, www.destatis.de, 2022), Data from the IEA (IEA, 2023) and own assumptions based on behavioral observations. All assumptions and data used to calculate hidden energy consumption for a four-person German standard household and sourced data are shown in Annex.

Once the total annual energy consumption of the household is estimated, it is possible to calculate the total cost by multiplying each energy source with its relative cost. However, although in the case of direct energy this was assumed as a unique average value for the household, hidden energy costs are affected by different sectors and a worldwide context. As a baseline, it was considered that only electricity and gas costs can vary according to different sectors. In that way, three different sectors were defined: residential, business and industrial. Business and industrial energy costs were calculated as a percentage of residential cost, which can be modulated on the front page of the developed tool. The percentage was estimated from the analysis of previous trends, considering around 75% of energy costs in residential sector for business and around 50% for industry. Business prices were considered for the production of foods, beverages and services, due to the disparities in producing them. In the case of clothing, as this is a more energy intensive sector that usually is located abroad European Union (EU), it was considered industry energy prices to compensate average lower energy costs.

Institute for Technology and Resources Management in the Tropics and Subtropics Technology Arts Sciences TH Köln

For comparing different years, the annual income as well as the price for electricity, gasoline, gas, and diesel are considered. What is not considered is the change in energy consumption. We assume that the change in consumption is neglectable.

#### Limits

There are a few limiting factors that are recognized during the process. Due to the restricted time period of one semester, the depth of research had to be cut at a certain point. This refers specially to manufactured goods from outside the EU as well as service goods.

For manufactured goods, the limitation lies in the complexity of production chains. These gain in complexity rapidly per production step. Many businesses intern information, like energy cost per unit of a product, are complicated to research in online or literature research only. Because of that, the risk of calculation errors increases strongly with manufactured goods.

Another limitation was the difference in energy cost, especially outside the EU. The purpose of the developed tool is to easily show the difference in annual financial burden according to a rise in energy cost. Since this paper also takes into consideration how much energy cost lies in consumable products and these products are often produced outside the EU, the national energy cost of the production land must be taken into consideration as well. But this directly conflicts with the idea of an easily appliable tool.

For services, a limitation was reached by experiencing the complexity to assess how much of the cost of a service goes back to energy cost. Reasons that are recognized are that not all service providers – especially smaller businesses – do a detailed assessment of their expenditures and apportions the energy cost on one unit of their service.

The data and especially prices for electricity, gas, and gasoline permanently change. Because of that, the result of this research must always be seen as a description of a certain time frame. This is the reason why the developed tool offers to put in the current prices. This paper also is designed around a four-person household. If households of different sizes use this tool, the result might be slightly off.

Institute for Technology and Resources Management in the Tropics and Subtropics



### Case Study

This report assesses the total energy costs of a German standardized four-person household. The aim is to not only analyze the direct electricity usage of a household, which can easily be detected by looking at the electric meter at the end of the year, but to reveal the full expenditure a four-person household has because of energy costs. For that reason, the research does not stop at assessing the costs for gas and gasoline. In this report, every notable form of energy consumption is analyzed, beginning with food, divided into fresh food, manufactured food, and beverages, followed by clothing and services.

The necessity of this report is based on the fact that the financial burden families must pay for energy and electricity steadily rises. Especially with the Russian war on Ukraine the prices for fossil primary energy sources exploded. But besides the number on the energy bill, also the analysis of hidden energy costs, which are found in every single product a family uses, is highly relevant. It reveals the true increment of expenditure that evolves from increasing energy prices.

The work followed a very linear approach. To get a first feeling for energy consumption, a list of applications in a standard household was made in cooperation with the whole team. From this point on, the different topics were researched individually. Every member elaborated a specific category of goods or products. In weekly meetings, the results were discussed and issues were solved to ensure a steady progress. After the tables were finished the results of their calculations were fed into the algorithm that is used to calculate the real annual costs for every type of good and to display it in the tool on the front page.

#### Results and Discussion

The findings of this research paper are impressive. It shows that a standard four-person household pays up to 9.600,65 every year for the total of all energy costs after using average energy costs in Germany in 2022 as input, representing 21% of from the average net income of the household (44.900,00).

The energy costs are broken down between the different categories as presented by Figure 3-Annual Energy Cost distribution between the different categories. The highest energy costs are gas expenditure followed by mobility and electricity, which represent the direct energy expenditures. The biggest part of the bill goes for gas expenditure. The yearly gas consumption of a household using gas for heating and warm water sums up to 4.250,00€. For mobility the family pays an annual 2.235,80€ which is mainly driven through the cost of gasoline. For direct energy consumption in the household like light, the refrigerator, the coffee machine and so on, it sums up to a yearly total amount of 1.599,89€. These three positions depict the direct energy consumption in form of gas, gasoline, and electricity. In total that makes 8.085,69€ annually for direct energy consumption and therefore the biggest part of the energy expenditure.

But also, the hidden energy costs are impressive. Hidden energy costs with a total of 1.514,96€ are minor compared to direct energy costs, broken down into 485,82€ for manufactured food, 388,82€ for fresh food, 173,66€ for beverages and 144,26€ for clothing.

# Energy Cost Distribution in different Sectors

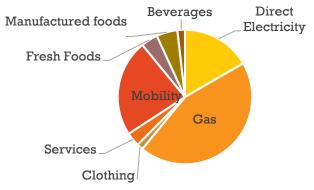



Figure 3- Annual Energy Cost distribution between the different categories

The results of this paper are remarkable. Considering that energy prices are rising faster (e.g. 61% between 2021 and 2022) than income which increased only by 3% between the same years (Figure 4), the power of purchase of families will decrease since the income increase cannot compete with energy prices increase. A standard family would not be able to buy as before since its purchase power will decrease by 2.465,28€ between 2021 and 2022, calculated by

the Tropics and Subtropics

subtracting the difference between income 2022-energy cost 2022 and income 2021-energy cost 2021.

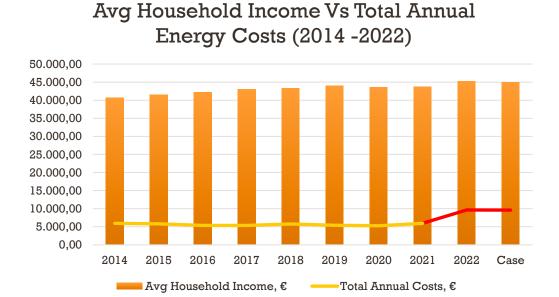



Figure 4- Average Household Income vs Total Annual Energy Costs (2014-2022). Graph from developed tool.

As shown by Table 1, more than 50% of energy consumption is gas, followed by gasoline (25%) and electricity (13%). The main energy sources follow the trend of annual energy costs.

Table 1- Energy Resources and their Breaking Down per category

#### Source of energy

|                                                   | Total     | Unit        | Gas       | Electricity | Diesel   | Gasoline  | LPG   | Others |
|---------------------------------------------------|-----------|-------------|-----------|-------------|----------|-----------|-------|--------|
| Yearly Direct Electricity Consumption             | 3.999,72  | kWh/a       | 0,00      | 3.999,72    | 0,00     | 0,00      | 0,00  | 0,00   |
| Yearly Heating Gas Consumption                    | 25.000,00 | kWh/a       | 25.000,00 | 0,00        | 0,00     | 0,00      | 0,00  | 0,00   |
| Yearly Clothing Energy<br>Consumption             | 863,18    | kWh/a       | 55,25     | 253,95      | 366,66   | 15,15     | 0,00  | 172,17 |
| Yearly Services Energy<br>Consumption             | 1.266,18  | kWh/a       | 167,38    | 788,95      | 0,00     | 206,69    | 96,44 | 6,72   |
| Yearly Mobility Energy<br>Consumption             | 10.584,39 | kWh/a       | 0,00      | 0,00        | 0,00     | 10.584,39 | 0,00  | 0,00   |
| Yearly Fresh Food Energy<br>Consumption           | 2.108,23  | kWh/a       | 486,01    | 405,28      | 594,40   | 318,45    | 0,00  | 304,09 |
| Yearly Manufactured<br>Food Energy<br>Consumption | 2.736,12  | kWh/a       | 1.336,82  | 377,57      | 534,35   | 436,83    | 0,00  | 50,56  |
| Yearly Beverages Energy<br>Consumption            | 886,83    | kWh/a       | 343,14    | 163,18      | 49,25    | 321,96    | 0,00  | 9,30   |
| TOTAL                                             | 47.444,65 | kWh/a       | 27.388,59 | 5.988,65    | 1.544,66 | 11.883,46 | 96,44 | 542,85 |
|                                                   | STota     | I/Total (%) | 58%       | 13%         | 3%       | 25%       | 0%    | 1%     |

In the actual scenario, electricity was used mainly for electrical appliances, lighting and cooking. Whereas gas was used mainly for heating and water heating.

Moreover, two other scenarios were considered. In the first one, only electricity was used for all the appliances at home, from lighting to heating. In the second scenario, only gas is used for the whole appliances, including heating and cooking. Comparison between the three scenarios is illustrated in Table 2 below. Comparing the different scenarios, scenario 3 has the least amount of total annual energy consumption, however it had the highest cost and share of income (23%). Scenario 1, which suggests mixing gas for heating and electricity for cooking, shows the lowest energy consumption and slightly higher energy costs and share of income compared to scenario 2. Scenario 1 was considered as the most common in German households.

Table 2- Comparison of the three scenarios

|                                                     | Total Annual Energy<br>Consumption (kWh/a) | Annual Energy Cost<br>(€) | % of Annual Energy<br>Cost from Total net<br>income | Available Income<br>After annual<br>Energy Cost (€) |
|-----------------------------------------------------|--------------------------------------------|---------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Scenario 1: Gas for heating+electricity for cooking | 47.444,65                                  | 9.600,65                  | 21,4%                                               | 35.299,35                                           |
| Scenario 2: Gas for heating+cooking                 | 47.749,65                                  | 9.561,65                  | 21,3%                                               | 35.338.35                                           |
| Scenario 3: Electricity for heating+cooking         | 34.744,65                                  | 10.270,65                 | 23%                                                 | 34.629,35                                           |

#### Conclusion and Recommendations

The goal of this report is to show how the rise of energy costs affects a standard family in Germany. For this purpose, a tool was created that shows the annual cost of direct as well as hidden energy cost depending on the current cost for electricity, gas, gasoline, and diesel. Total annual energy costs are compared to the mean annual income to present to what extent the household was burdened in the specific analyzed period. To assess the annual costs, a mixture of statistical data analysis and assumptions is used.

As it can be seen in Figure 3- Annual Energy Cost distribution between the different categories, the intensity in that a specific sector burdens a standard family moneywise differs heavily. Especially the three sectors gas, mobility, and direct electricity consumption are standing out. With a gap, these are followed by manufactured foods, fresh foods, beverages, services, and clothing.

By looking at these results, it shows that the most effective lever to tackle the rising energy costs is to lower the quantity of gas, mobility and direct electricity consumption.

Here are a few recommendations for households to lower the consumption in these sectors:

Gas: as gas is mainly used for heating and for hot water production, it is obvious that a change in heating related behavior is the most effective way to lower these costs. One recommendation would be to only heat one room that is used instead of heating the whole house. For example, during the day only the bureau or kitchen, in the evening the living room and during the night, if necessary, the bedroom. Also keep the doors shut, so the heat stays in this room. Also waste heat should be used. So, keeping the oven door open after baking can help heating up the kitchen.

Mobility: for mobility a change in behavior regarding traveling makes sense. For example, switching from commuting via car to work to taking the train or even the bike can make a big difference in the energy bill at the end of the month. And taking the bike more often can also have a health benefit.

Direct Electricity: to lower the direct electricity consumption might be the most complicated change. This is because direct electricity consumption is composed of a huge variety of usually low-consumption applications. Still, it can make a difference to be aware of using patterns. For example, switching off power strips when not in use. Turn off the TV and light when leaving the room. Closing the door of the refrigerator every time after something is taken out or preparing coffee for all household members that want one instead of doing it separately. But

ITT Institute for Technology and

Institute for Technology and Resources Management in the Tropics and Subtropics



still, all these recommendations only have a small effect on their own. Because of that, for direct electricity consumption many small steps are necessary.

Since the burden of the other sectors is lower, recommendations to save notable amounts of money are hard to realize. Approaches could be to only buy local food, to avoid high prices on transportation costs or to go to the restaurant less often. But because the annual costs that relate only to energy are a few hundred euros per year, a notable lowering is difficult to achieve and not as effective as the first three sectors. Another point that must be taken in consideration is that this rise in energy cost that every household is experiencing at the moment is not only a result of individual behavior of the households. Of course, the number one reason is the war that Russia started. But also, politics must be aware of unlikely and unpredictable events like wars or the COVID-pandemic. Reactions like the Gas-Price-Cutoff (Gaspreisbremse) (Bundesregierung, 2022) are examples. But this is only a reaction to the current situation. To avoid these rises in private energy expenditure, politics must act and not only react for these situations.

### **Bibliography**

- Bundesregierung. (24. December 2022). *bundesregierung.de*. Von Price caps for electricity, gas and heat: https://www.bundesregierung.de/breg-en/search/energy-price-brakes-2156430 abgerufen
- DESTATIS. (2019). Preise Verbraucherpreisindex für Deutschland Wägungsschema für das Basisjahr 2015. Von:
  - $https://www.destatis.de/DE/Themen/Wirtschaft/Preise/Verbraucherpreisindex/Method\ en/Downloads/waegungsschema-2015.pdf?\__blob=publicationFile$
- DESTATIS. (2021). Laufende Wirtschaftsrechnungen. Statistisches Bundesamt.
- DESTATIS. (29. Mar 2022). www.destatis.de. Abgerufen am Jan 2023 von Energiepreise: Hohe Steigerungen auf allen Wirtschaftsstufen:
- https://www.destatis.de/DE/Presse/Pressemitteilungen/2022/03/PD22\_N016\_61.html IEA. (2023). *Germany*. Von iea.org:
  - https://www.google.com/search?q=difference+web+page+web+site&rlz=1C5CHFA\_enDE802DE802&oq=difference+web+page+web+site&aqs=chrome..69i57j0i10i22i30i625j0i22i30i625l2j0i8i13i30i625l2j0i8i13i30l3.4632j0j7&sourceid=chrome&ie=UTF-8 abgerufen

Institute for Technology and Resources Management in the Tropics and Subtropics Technology Arts Sciences TH Köln

### Annex

# Annex 1. Direct household energy consumption.

| Appliance                                                      | Assumptions                                                    | References                                |  |  |  |  |  |  |
|----------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|
| Lighting                                                       | LED lighting of 12W, 10 lights per house and 3 hours per day   | Verbraucherzentrale Rheinland-Pfalz, 2016 |  |  |  |  |  |  |
| Gaming console                                                 | 150 W and 2 hours per day                                      | Vattenfall, n.d.                          |  |  |  |  |  |  |
| Clock radio                                                    | 1 W and 5 hours per day                                        | Joteo, n.d.                               |  |  |  |  |  |  |
| TV                                                             | Efficiency A+, 48W and 4 hours per day                         | Verbraucherzentrale Rheinland-Pfalz, 2016 |  |  |  |  |  |  |
| Smartphone                                                     | 20 W and 2 hours per day                                       | Own Iphone                                |  |  |  |  |  |  |
| Laptop                                                         | 60W and 3 hours per day                                        | Own Laptop                                |  |  |  |  |  |  |
| Hair dryer                                                     | 1.750 W and 10 minutes per day                                 | Marsh, 2022                               |  |  |  |  |  |  |
| Printer                                                        | 40 W and 10 minutes per month                                  | EnergyUse Calculator, n.d.                |  |  |  |  |  |  |
| Wifi Router                                                    | 6 W and 24 hours per day (disconnected during holidays)        | EnergyUse Calculator, n.d.                |  |  |  |  |  |  |
| Iron                                                           | 1.100 W and 10 minutes per day                                 | EnergyUse Calculator, n.d.                |  |  |  |  |  |  |
| Vacuum Cleaner                                                 | 1.400 W and 10 minutes per day                                 | EnergyUse Calculator, n.d.                |  |  |  |  |  |  |
| Toaster                                                        | 1.200 W and 5 minutes per day                                  | EnergyUse Calculator, n.d.                |  |  |  |  |  |  |
| Food mixer                                                     | 500 W and 256 hours in a year                                  | AHAM, 2018                                |  |  |  |  |  |  |
| Fridge-refrigerator                                            | 500 W and estimating 15 minutes work each hour (also holidays) | Nguyen & Wagener, 2021                    |  |  |  |  |  |  |
| Coffee machine                                                 | 800 W and 15 min per day                                       | Own Coffee machine                        |  |  |  |  |  |  |
| Dishwasher                                                     | 280 loads per year of 1,5 to 4 hours and 1,2 to 1,5 kWh        | Verbraucherzentrale Rheinland-Pfalz, 2016 |  |  |  |  |  |  |
| Microwave                                                      | 800 W and 1 hour per week                                      | Heath, 2017                               |  |  |  |  |  |  |
| Oven                                                           | 2.500 W and 2 hours per week                                   | Marsh, 2022                               |  |  |  |  |  |  |
| Extractor hood                                                 | 116 W and 1 hour per day                                       | Verbraucherzentrale Rheinland-Pfalz, 2016 |  |  |  |  |  |  |
| Standby                                                        | 40 W for all house as average and 22 hours per day             | Pano, 2017                                |  |  |  |  |  |  |
| Fan                                                            | 50 W, with 5 h per day during 40 days and 10 h during 30 days  | Verbraucherzentrale Rheinland-Pfalz, 2016 |  |  |  |  |  |  |
| Water heater                                                   | 11 kW with 3 minutes per day (only kitchen purposes)           | Durchlauferhitzer Ratgeber, 2022          |  |  |  |  |  |  |
| Washing machine                                                | 220 washes per year, assuming 780 W and 1 hour per wash        | Verbraucherzentrale Rheinland-Pfalz, 2016 |  |  |  |  |  |  |
| Dryer                                                          | 160 times per year, assuming 1300 W and 1 hour per use         | Verbraucherzentrale Rheinland-Pfalz, 2016 |  |  |  |  |  |  |
| Cooking stove                                                  | Assumed 395 kWh per year                                       | Gasag, 2021                               |  |  |  |  |  |  |
| Direct gas consum                                              | otion                                                          |                                           |  |  |  |  |  |  |
| Heating Average consumption of 25.000 kWh per year Bosch, n.d. |                                                                |                                           |  |  |  |  |  |  |
| Further comments                                               |                                                                |                                           |  |  |  |  |  |  |

# Annex 2. Indirect household energy consumption.

Annex 2-1. Fresh food.

| Category      | Product | Process                | Energy<br>form | Energy<br>(MJ/kg) | Comments                                                                                        | References                                                          |
|---------------|---------|------------------------|----------------|-------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|               |         | Processing and storage | Electricity    | 0,56              | Assumed electricity and mainstream food system in EU                                            | Van Hauwermeiren et al., 2007, as cited in Ladha-Sabur et al., 2019 |
|               |         | Farming                | Diesel-Oil     | 0,08              | Calculated from share of diesel in apple farming                                                | Akdemir et al., 2012                                                |
|               | Apple   | Farming                | Electricity    | 0,46              | Calculated from share of electricity in apple farming                                           | Akdemir et al., 2012                                                |
|               | прріс   | Farming (fertilizers)  | Natural gas    | 0,85              | Calculated from share of fertilizers in apple farming. Assumed fertilizers are 90% natural gas  | Akdemir et al., 2012; Fadare et al., 2010                           |
|               |         | Transport              | Gasoline-Oil   | 0,54              | Assumed gasoline in mainstream food system in EU                                                | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019         |
|               |         | Processing and storage | Electricity    | 0,56              | Assumed electricity and mainstream food system in EU                                            | Van Hauwermeiren et al., 2007, as cited in Ladha-Sabur et al., 2019 |
|               |         | Farming (fertilizers)  | Natural gas    | 0,70              | Calculated from share of fertilizers in grape farming. Assumed fertilizers are 90% natural gas  | Karimi & Moghaddam, 2018;<br>Fadare et al., 2010                    |
| Gra<br>Fruits | Grapes  | Farming                | Electricity    | 0,17              | Calculated from share of electricity in grape farming                                           | Karimi & Moghaddam, 2018                                            |
|               |         | Farming                | Diesel-Oil     | 0,11              | Calculated from share of diesel in grape farming                                                | Karimi & Moghaddam, 2018                                            |
| Traits        |         | Transport              | Gasoline-Oil   | 0,80              | Assumed gasoline for short distance (700 km)                                                    | Xu et al., 2009, as cited in Ladha-<br>Sabur et al., 2019           |
|               |         | Farming (fertilizers)  | Natural gas    | 0,09              | Calculated from share of fertilizers in banana farming. Assumed fertilizers are 90% natural gas | Akcaoz, 2011; Fadare et al., 2010                                   |
|               |         | Farming                | Electricity    | 0,27              | Calculated from share of electricity in banana farming                                          | Akcaoz, 2011                                                        |
|               |         | Farming                | Diesel-Oil     | 0,04              | Calculated from share of diesel in banana farming                                               | Akcaoz, 2011                                                        |
|               | Banana  | Processing and storage | Electricity    | 0,56              | Assumed electricity and mainstream food system                                                  | Van Hauwermeiren et al., 2007, as cited in Ladha-Sabur et al., 2019 |
|               |         | Transport              | Gasoline-Oil   | 0,80              | Assumed gasoline for short distance (700 km)                                                    | Xu et al., 2009, as cited in Ladha-Sabur et al., 2019               |
|               |         | Transport              | Marine Fuel    | 2,75              | International sea vessel trip                                                                   | Smith et al., 1999, as cited in<br>Ladha-Sabur et al., 2019         |
|               |         | Transport              | Diesel-Oil     | 0,21              | Refrigeration energy for sea cargo, assuming diesel. Considered 6.000 km.                       | Cleland et al., 1981, as cited in Ladha-Sabur et al., 2019          |
|               |         | Processing             | Electricity    | 0,55              | Assumed electricity and mainstream food system without packaging                                | Lillywhite et al., 2013, as cited in Ladha-Sabur et al., 2019       |
| Vegetables    | Potato  | Transport              | Gasoline-Oil   | 1,07              | Assumed gasoline in mainstream food system in EU                                                | Smith et al., 1999, as cited in<br>Ladha-Sabur et al., 2019         |
|               |         | Farming (fertilizers)  | Natural gas    | 0,95              | Calculated from share of fertilizers in potato farming. Assumed fertilizer are 90% natural gas  | Pishgar-Komleh et al., 2012,<br>Fadare et al., 2010                 |

|        |          | Farming                | Diesel-Oil   | 0,25 | Calculated from share of diesel in potato farming                                                    | Pishgar-Komleh et al., 2012                                         |
|--------|----------|------------------------|--------------|------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|        |          | Processing and storage | Electricity  | 0,10 | Assumed electricity and mainstream food system in EU                                                 | Van Hauwermeiren et al., 2007, as cited in Ladha-Sabur et al., 2019 |
|        | Tomato   | Transport              | Gasoline-Oil | 1,07 | Assumed gasoline in mainstream food system in EU                                                     | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019         |
|        |          | Farming (fertilizers)  | Natural gas  | 0,25 | Calculated from share of fertilizers in tomato farming. Assumed fertilizer are 90% natural gas       | Kulekci & Sari, 2020., Fadare et al., 2010                          |
|        |          | Farming                | Diesel-Oil   | 0,16 | Calculated from share of diesel in tomato farming                                                    | Kulekci & Sari, 2020.                                               |
|        |          | Processing and storage | Electricity  | 0,21 | Assumed electricity and mainstream food system in EU                                                 | Van Hauwermeiren et al., 2007, as cited in Ladha-Sabur et al., 2019 |
|        |          | Transport              | Gasoline-Oil | 1,07 | Assumed gasoline in mainstream food system in EU                                                     | Smith et al., 1997, as cited in Ladha-Sabur et al., 2019            |
|        | Carrot   | Farming (fertilizers)  | Natural gas  | 0,47 | Calculated from share of fertilizers in black carrot farming. Assumed fertilizer are 90% natural gas | Čelik et al., 2010, Fadare et al., 2010                             |
|        |          | Farming                | Electricity  | 0,43 | Calculated from share of electricity in black carrot farming                                         | Čelik et al., 2010                                                  |
|        |          | Farming                | Diesel-Oil   | 0,28 | Calculated from share of diesel in black carrot farming                                              | Čelik et al., 2010                                                  |
|        |          | Transport              | Gasoline-Oil | 1,20 | Transportation conventional food system within EU                                                    | Xu and Flapper, 2011, as cited in<br>Ladha-Sabur et al., 2019       |
|        | Cucumber | Farming (fertilizers)  | Natural gas  | 0,30 | Calculated from share of fertilizers in cucumber farming. Assumed fertilizer are 90% natural gas     | Pahlavan et al., 2011, Fadare et al., 2010                          |
|        |          | Farming                | Diesel-Oil   | 1,20 | Calculated from share of diesel in cucumber farming                                                  | Pahlavan et al., 2011                                               |
|        |          | Farming                | Electricity  | 0,76 | Calculated from share of electricity in cucumber farming                                             | Pahlavan et al., 2011                                               |
|        |          | Transport              | Gasoline-Oil | 1,20 | Transportation conventional food system within EU                                                    | Xu and Flapper, 2011, as cited in<br>Ladha-Sabur et al., 2019       |
|        | Onion    | Farming (fertilizers)  | Natural gas  | 0,17 | Calculated from share of fertilizers in onion farming. Assumed fertilizer are 90% natural gas        | Elhami et al., 2021, Fadare et al., 2010                            |
|        |          | Farming                | Diesel-Oil   | 0,41 | Calculated from share of diesel in onion farming                                                     | Elhami et al., 2021                                                 |
|        |          | Farming                | Electricity  | 1.35 | Calculated from share of electricity in onion farming                                                | Elhami et al., 2021                                                 |
|        |          | Processing             | Electricity  | 0,20 |                                                                                                      | Foster et al., 2006, as cited in Ladha-Sabur et al., 2019           |
|        |          | Processing             | Natural gas  | 0,46 | Thermal energy assumed as natural gas                                                                | Foster et al., 2006, as cited in Ladha-Sabur et al., 2019           |
| Milk   | Milk     | Packaging              | Electricity  | 0,45 |                                                                                                      | Foster et al., 2006, as cited in Ladha-Sabur et al., 2019           |
| IVIIIK | WIIIK    | Transport              | Gasoline-Oil | 1,40 | Within EU (195 km)                                                                                   | Xu and Flapper, 2011, as cited in<br>Ladha-Sabur et al., 2019       |
|        |          | Farming                | Electricity  | 0,10 | Calculated from share of electricity in dairy farm                                                   | Hosseinzadeh-Bandbafha et al., 2018                                 |
|        |          | Farming                | Diesel-Oil   | 0,44 | Calculated from share of diesel in dairy farm                                                        | Hosseinzadeh-Bandbafha et al., 2018                                 |

|      |               | Cow fodder                        | Natural gas  | 2,81  | Calculated from share of fertilizers (90% natural gas) required in growing cow fodder and energy content of animal feed in dairy production                                        | Forip et al., 2012; Hosseinzadeh-Bandbafha et al., 2018; Fadare et al., 2010 |
|------|---------------|-----------------------------------|--------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|      |               | Cow fodder                        | Diesel-Oil   | 1,59  | Calculated from share of diesel in growing cow fodder and energy content of animal feed in dairy production                                                                        | Forip et al., 2012; Hosseinzadeh-<br>Bandbafha et al., 2018                  |
|      |               | Farming                           | Electricity  | 0,31  | Calculated from share of electricity in poultry farm management                                                                                                                    | Sasanya et al., 2022                                                         |
|      |               | Farming                           | Diesel-Oil   | 4,42  | Calculated from share of diesel in poultry fam management                                                                                                                          | Sasanya et al., 2022                                                         |
|      |               | Transport                         | Gasoline-Oil | 0,75  | Assumed gasoline for general product with short distance within EU (400 km)                                                                                                        | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019                  |
| Eggs | Eggs          | Poultry fodder                    | Diesel-Oil   | 0,81  | Calculated from share of diesel in poultry feed production and energy content of feed in egg production (assumed similar to wheat)                                                 | Sasanya et al., 2022; Paris et al., 2022                                     |
|      |               | Poultry<br>fodder<br>(fertilizer) | Natural gas  | 1,43  | Calculated from share of fertilizer (90% natural gas) in poultry feed production and energy content of feed in egg production (assumed similar to wheat)                           | Sasanya et al., 2022; Paris et al., 2022, Fadare et al., 2010                |
|      |               | Processing                        | Electricity  | 0,31  | Value per kg of dress carcass weight in Europe                                                                                                                                     | Wang, 2014, as cited in Ladha-<br>Sabur et al., 2019                         |
|      |               | Processing                        | Natural gas  | 0,54  | Value per kg of dress carcass weight in Europe. Assumed natural gas as thermal energy                                                                                              | Wang, 2014, as cited in Ladha-<br>Sabur et al., 2019                         |
|      | Beef          | Transport                         | Gasoline-Oil | 0,34  | Assumed gasoline in mainstream food system in EU                                                                                                                                   | Smith et al., 1997, as cited in Ladha-Sabur et al., 2019                     |
|      |               | Farming                           | Electricity  | 7,82  | Calculated from average share of electricity in beef meat production in EU                                                                                                         | Bas Paris et al., 2022                                                       |
|      |               | Farming                           | Diesel-Oil   | 19,14 | Calculated from average share of diesel in beef meat production in EU                                                                                                              | Bas Paris et al., 2022                                                       |
|      |               | Cow fodder                        | Natural gas  | 1,41  | Calculated from share of fertilizers (90% natural gas) required in growing cow fodder and energy content of animal feed in beef meat production                                    | Forip et al. (2012); Bas Paris et al., 2022; Fadare et al., 2010             |
|      |               | Cow fodder                        | Diesel-Oil   | 0,79  | Calculated from share of diesel in growing cow fodder and energy content of animal feed in beef meat production                                                                    | Forip et al. (2012); Bas Paris et al., 2022                                  |
| Meat |               | Processing                        | Electricity  | 1,01  | Value per kg of dress carcass weight in Europe                                                                                                                                     | Wang, 2014, as cited in Ladha-<br>Sabur et al., 2019                         |
|      |               | Processing                        | Natural gas  | 0,58  | Value per kg of dress carcass weight in Europe. Assumed natural gas as thermal energy                                                                                              | Wang, 2014, as cited in Ladha-<br>Sabur et al., 2019                         |
|      |               | Transport                         | Gasoline-Oil | 0,45  | Assumed gasoline for short distance (700 km)                                                                                                                                       | Xu et al., 2009, as cited in Ladha-<br>Sabur et al., 2019                    |
|      | Poultry       | Farming                           | Electricity  | 0,26  | Average value for broiler systems in EU                                                                                                                                            | Paris et al., 2022                                                           |
|      | 2 3 3 3 3 3 3 | Farming                           | Natural gas  | 2,31  | Average value for broiler systems in EU. Assumed natural gas as thermal energy                                                                                                     | Paris et al., 2022                                                           |
|      |               | Poultry<br>fodder                 | Diesel-Oil   | 0,81  | Calculated from share of diesel in poultry feed production (assumed similar to wheat) and energy content of feed in egg production (assumed similar to meat)                       | Sasanya et al., 2022; Paris et al., 2022                                     |
|      |               | Poultry<br>fodder<br>(fertilizer) | Natural gas  | 1,43  | Calculated from share of fertilizer (90% natural gas) in poultry feed production (assumed similar to wheat) and energy content of feed in egg production (assumed similar to meat) | Sasanya et al., 2022; Paris et al., 2022, Fadare et al., 2010                |
|      | Pork          | Processing                        | Electricity  | 0,47  | Value per kg of dress carcass weight in Europe                                                                                                                                     | Wang, 2014, as cited in Ladha-<br>Sabur et al., 2019                         |

|         |                | Processing                  | Natural gas  | 0,93  | Value per kg of dress carcass weight in Europe. Assumed natural gas as thermal energy        | Wang, 2014, as cited in Ladha-<br>Sabur et al., 2019          |
|---------|----------------|-----------------------------|--------------|-------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|         |                | Transport                   | Gasoline-Oil | 0,45  | Assumed gasoline for short distance (700 km)                                                 | Xu et al., 2009, as cited in Ladha-<br>Sabur et al., 2019     |
|         |                | Farming                     | Electricity  | 2,24  | Average value for pork production in Germany. Direct electricity consumption per kg of meat. | Paris et al., 2022                                            |
|         |                | Farming                     | Diesel-Oil   | 1,45  | Average value for pork production in Germany. Direct diesel consumption per kg of meat.      | Paris et al., 2022                                            |
|         |                | Pork fodder                 | Diesel-Oil   | 0,81  | Assumed similar to poultry feed production                                                   | Sasanya et al., 2022; Paris et al., 2022                      |
|         |                | Pork fodder<br>(fertilizer) | Natural gas  | 1,43  | Assumed similar to poultry feed production                                                   | Sasanya et al., 2022; Paris et al., 2022, Fadare et al., 2010 |
|         | Fresh fish     | Processing                  | Electricity  | 0,13  | Fresh fillet production                                                                      | Wang, 2014, as cited in Ladha-<br>Sabur et al., 2019          |
|         |                | Processing                  | Diesel-Oil   | 0,01  | Fresh fillet production                                                                      | Wang, 2014, as cited in Ladha-<br>Sabur et al., 2019          |
|         |                | Transport                   | Gasoline-Oil | 0,81  | Assumed gasoline for general product with short distance within EU (400 km)                  | Smith et al., 1997, as cited in Ladha-Sabur et al., 2019      |
|         |                | Fishing                     | Gasoline-Oil | 0,04  | Vessel with 10-20 GT catch capacity and fresh fish operation and landing                     | Fatehah et al., 2016                                          |
|         |                | Fishing                     | Diesel-Oil   | 0,43  | Vessel with 10-20 GT catch capacity and fresh fish operation and landing                     | Fatehah et al., 2016                                          |
| F' . 1. |                | Fishing                     | Marine Fuel  | 15,62 | Vessel with 10-20 GT catch capacity and fresh fish operation and landing                     | Fatehah et al., 2016                                          |
| Fish    |                | Processing                  | Electricity  | 0,61  | Frozen fillet production                                                                     | Wang, 2014, as cited in Ladha-<br>Sabur et al., 2019          |
|         |                | Processing                  | Diesel-Oil   | 0,01  | Frozen fillet production                                                                     | Wang, 2014, as cited in Ladha-<br>Sabur et al., 2019          |
|         | Frozen<br>fish | Transport                   | Gasoline-Oil | 0,93  | Assumed gasoline for general product with short distance within EU (400 km)                  | Smith et al., 1997, as cited in Ladha-Sabur et al., 2019      |
|         |                | Fishing                     | Gasoline-Oil | 0,04  | Vessel with 10-20 GT catch capacity and fresh fish operation and landing                     | Fatehah et al., 2016                                          |
|         |                | Fishing                     | Diesel-Oil   | 0,43  | Vessel with 10-20 GT catch capacity and fresh fish operation and landing                     | Fatehah et al., 2016                                          |
|         |                | Fishing                     | Marine Fuel  | 15,62 | Vessel with 10-20 GT catch capacity and fresh fish operation and landing                     | Fatehah et al., 2016                                          |

### Annex 2-2. Manufactured food.

| Category  | Product  | Process             | Energy form  | Energy<br>(MJ/kg) | Comments                                                                                                                                 | References                                                                   |
|-----------|----------|---------------------|--------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|           |          | Processing          | Electricity  | 0,27              | Value for bread production in EU                                                                                                         | Carlsson-Kanyama and Faist,<br>2000, as cited in Ladha-Sabur et<br>al., 2019 |
|           |          | Processing          | Natural gas  | 2,50              | Value for bread production in EU                                                                                                         | Carlsson-Kanyama and Faist,<br>2000, as cited in Ladha-Sabur et<br>al., 2019 |
|           | Bread    | Transport           | Gasoline-Oil | 1,00              | Transportation conventional food system within EU                                                                                        | Xu and Flapper, 2011, as cited in Ladha-Sabur et al., 2019                   |
|           |          | Ingredient (wheat)  | Natural gas  | 1,53              | Calculated from share of fertilizers for wheat production and assuming 80% of bread content is wheat. 90% of fertilizer is natural gas   | Paris et al., 2022; Fadare et al., 2010                                      |
|           |          | Ingredient (wheat)  | Diesel-Oil   | 0,86              | Calculated from share of diesel in wheat production and assuming 80% of bread content is wheat                                           | Paris et al., 2022                                                           |
|           |          | Ingredient (wheat)  | Electricity  | 0,29              | Estimated for flour milling. Assumed that 80% of bread is wheat                                                                          | Carlsson-Kanyama and Faist,<br>2000, as cited in Ladha-Sabur et<br>al., 2019 |
|           |          | Processing          | Electricity  | 1,13              |                                                                                                                                          | Threkelsen et al., 2014, as cited in Ladha-Sabur et al., 2019                |
| Bread and |          | Processing          | Natural gas  | 4,19              | Assumed natural gas for thermal energy                                                                                                   | Threkelsen et al., 2014, as cited in Ladha-Sabur et al., 2019                |
| cereals   |          | Transport           | Gasoline-Oil | 0,75              | Assumed gasoline for general product with short distance within EU (400 km)                                                              | Smith et al., 1997, as cited in Ladha-Sabur et al., 2019                     |
|           |          | Ingredient (wheat)  | Natural gas  | 0,96              | Calculated from share of fertilizers for wheat production and assuming 50% of biscuit content is wheat. 90% of fertilizer is natural gas | Paris et al., 2022; Fadare et al., 2010                                      |
|           |          | Ingredient (wheat)  | Diesel-Oil   | 0,54              | Calculated from share of diesel in wheat production and assuming 50% of biscuit content is wheat                                         | Paris et al., 2022                                                           |
|           | Biscuits | Ingredient (wheat)  | Electricity  | 0,18              | Estimated for flour milling. Assumed that 50% of biscuit content is wheat                                                                | Carlsson-Kanyama and Faist,<br>2000, as cited in Ladha-Sabur et<br>al., 2019 |
|           |          | Ingredient (butter) | Electricity  | 0,40              | Assumed that butter is 33% of biscuit content. Value from butter production                                                              | See Butter                                                                   |
|           |          | Ingredient (butter) | Diesel-Oil   | 0,54              | Assumed that butter is 33% of biscuit content. Value from butter production                                                              | See Butter                                                                   |
|           |          | Ingredient (butter) | Gasoline-Oil | 0,62              | Assumed that butter is 33% of biscuit content. Value from butter production                                                              | See Butter                                                                   |
|           |          | Ingredient (butter) | Natural gas  | 1,34              | Assumed that butter is 33% of biscuit content. Value from butter production                                                              | See Butter                                                                   |
|           |          | Ingredient (sugar)  | Electricity  | 0,15              | Assumed that sugar is 17% of biscuit content. Value from sugar production                                                                | See Sugar                                                                    |

|  |      | Ingredient (sugar)  | Diesel-Oil   | 0,16 | Assumed that sugar is 17% of biscuit content. Value from sugar production                                                                     | See Sugar                                                                    |
|--|------|---------------------|--------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|  |      | Ingredient (sugar)  | Gasoline-Oil | 0,13 | Assumed that sugar is 17% of biscuit content. Value from sugar production                                                                     | See Sugar                                                                    |
|  |      | Ingredient (sugar)  | Natural gas  | 0,53 | Assumed that sugar is 17% of biscuit content. Value from sugar production                                                                     | See Sugar                                                                    |
|  |      | Processing          | Electricity  | 0,73 |                                                                                                                                               | Threkelsen et al., 2014, as cited in Ladha-Sabur et al., 2019                |
|  |      | Processing          | Natural gas  | 1,78 | Assumed natural gas for thermal energy                                                                                                        | Threkelsen et al., 2014, as cited in Ladha-Sabur et al., 2019                |
|  |      | Transport           | Gasoline-Oil | 0,75 | Assumed gasoline for general product with short distance within EU (400 km)                                                                   | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019                  |
|  |      | Ingredient (wheat)  | Natural gas  | 0,48 | Calculated from share of fertilizers for wheat production and assuming 25% of average cake content is wheat. 90% of fertilizer is natural gas | Paris et al., 2022; Fadare et al., 2010                                      |
|  |      | Ingredient (wheat)  | Diesel-Oil   | 0,27 | Calculated from share of diesel in wheat production and assuming 25% of average cake content is wheat                                         | Paris et al., 2022                                                           |
|  |      | Ingredient (wheat)  | Electricity  | 0,09 | Estimated for flour milling. Assumed that 25% of average cake content is wheat                                                                | Carlsson-Kanyama and Faist,<br>2000, as cited in Ladha-Sabur et<br>al., 2019 |
|  |      | Ingredient (sugar)  | Electricity  | 0,26 | Assumed that sugar is 29% of cake content. Value from sugar production                                                                        | See Sugar                                                                    |
|  |      | Ingredient (sugar)  | Diesel-Oil   | 0,27 | Assumed that sugar is 29% of cake content. Value from sugar production                                                                        | See Sugar                                                                    |
|  | Cake | Ingredient (sugar)  | Gasoline-Oil | 0,22 | Assumed that sugar is 29% of cake content. Value from sugar production                                                                        | See Sugar                                                                    |
|  |      | Ingredient (sugar)  | Natural gas  | 0,90 | Assumed that sugar is 29% of cake content. Value from sugar production                                                                        | See Sugar                                                                    |
|  |      | Ingredient (butter) | Electricity  | 0,18 | Assumed that butter is 15% of cake content. Value from butter production                                                                      | See Butter                                                                   |
|  |      | Ingredient (butter) | Diesel-Oil   | 0,25 | Assumed that butter is 15% of cake content. Value from butter production                                                                      | See Butter                                                                   |
|  |      | Ingredient (butter) | Gasoline-Oil | 0,28 | Assumed that butter is 15% of cake content. Value from butter production                                                                      | See Butter                                                                   |
|  |      | Ingredient (butter) | Natural gas  | 0,61 | Assumed that butter is 15% of cake content. Value from butter production                                                                      | See Butter                                                                   |
|  |      | Ingredient (milk)   | Electricity  | 0,12 | Assumed that milk is 16% of cake content. Value from milk production.                                                                         | See Milk                                                                     |
|  |      | Ingredient (milk)   | Diesel-Oil   | 0,32 | Assumed that milk is 16% of cake content. Value from milk production.                                                                         | See Milk                                                                     |
|  |      | Ingredient (milk)   | Gasoline-Oil | 0,22 | Assumed that milk is 16% of cake content. Value from milk production.                                                                         | See Milk                                                                     |
|  |      | Ingredient (milk)   | Natural gas  | 0,52 | Assumed that milk is 16% of cake content. Value from milk production.                                                                         | See Milk                                                                     |

|       |       | Ingredient (egg)     | Electricity  | 0,05 | Assumed that eggs are 15% of cake content. Value from eggs production.                                                                 | See Eggs                                                                     |
|-------|-------|----------------------|--------------|------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|       |       | Ingredient (egg)     | Diesel-Oil   | 0,78 | Assumed that eggs are 15% of cake content. Value from eggs production.                                                                 | See Eggs                                                                     |
|       |       | Ingredient (egg)     | Gasoline-Oil | 0,11 | Assumed that eggs are 15% of cake content. Value from eggs production.                                                                 | See Eggs                                                                     |
|       |       | Ingredient (egg)     | Natural gas  | 0,21 | Assumed that eggs are 15% of cake content. Value from eggs production.                                                                 | See Eggs                                                                     |
|       |       | Processing           | Electricity  | 0,70 |                                                                                                                                        | Carlsson-Kanyama and Faist,<br>2000, as cited in Ladha-Sabur et<br>al., 2019 |
|       |       | Processing           | Natural gas  | 1,70 | Assumed natural gas for hot water heating.                                                                                             | Carlsson-Kanyama and Faist,<br>2000, as cited in Ladha-Sabur et<br>al., 2019 |
|       | Pasta | Transport            | Gasoline-Oil | 0,75 | Assumed gasoline for general product with short distance within EU (400 km)                                                            | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019                  |
|       |       | Ingredient (wheat)   | Natural gas  | 1,53 | Calculated from share of fertilizers for wheat production and assuming 80% of pasta content is wheat. 90% of fertilizer is natural gas | Paris et al., 2022; Fadare et al., 2010                                      |
|       |       | Ingredient (wheat)   | Diesel-Oil   | 0,86 | Calculated from share of diesel in wheat production and assuming 80% of pasta content is wheat                                         | Paris et al., 2022                                                           |
|       |       | Ingredient (wheat)   | Electricity  | 0,29 | Estimated for flour milling. Assumed that 80% of pasta content is wheat                                                                | Carlsson-Kanyama and Faist,<br>2000, as cited in Ladha-Sabur et<br>al., 2019 |
|       |       | Processing           | Electricity  | 0,20 | Considered parboiled rice from India.                                                                                                  | Van Alfen, 2014, as cited in<br>Ladha-Sabur et al., 2019                     |
|       |       | Processing           | Diesel-Oil   | 3,10 | Considered parboiled rice from India. Natural gas for thermal energy                                                                   | Van Alfen, 2014, as cited in<br>Ladha-Sabur et al., 2019                     |
| Rice  | Rice  | Transport            | Marine Fuel  | 1,40 | Sea cargo from Asia to Europe                                                                                                          | Hendrickson, 1996, as cited in<br>Ladha-Sabur et al., 2019                   |
|       |       | Transport            | Gasoline-Oil | 0,40 | Assumed gasoline truck for short distance                                                                                              | Arendt and Zanini, 2013, as cited in Ladha-Sabur et al., 2019                |
|       |       | Farming              | Diesel-Oil   | 0,37 | Calculated from share of diesel energy in wetland paddy cultivation                                                                    | Muazu et al., 2015                                                           |
|       |       | Farming (fertilizer) | Natural gas  | 1,17 | Calculated from share of fertilizer in wetland paddy cultivation. 90% of energy content of fertilizer is natural gas                   | Muazu et al., 2015; Fadare et al., 2010                                      |
|       |       | Processing           | Electricity  | 0,21 | Refining sugarcane                                                                                                                     | Van Alfen, 2014, as cited in<br>Ladha-Sabur et al., 2019                     |
|       |       | Processing           | Natural gas  | 2,89 | Refining sugarcane. Assumed natural gas as thermal energy                                                                              | Van Alfen, 2014, as cited in<br>Ladha-Sabur et al., 2019                     |
| Sugar | Sugar | Processing           | Diesel-Oil   | 0,58 | Refining sugarcane                                                                                                                     | Van Alfen, 2014, as cited in<br>Ladha-Sabur et al., 2019                     |
|       |       | Transport            | Gasoline-Oil | 0,75 | Assumed gasoline for general product with short distance within EU (400 km)                                                            | Smith et al., 1997, as cited in Ladha-Sabur et al., 2019                     |
|       |       | Transport            | Marine Fuel  | 2,75 | General international transportation through sea vessel                                                                                | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019                  |

|        |        | Farming              | Electricity  | 0,68  | Calculated from share of electricity in sugarcane production                                                                                  | Karimi et al., 2008                                       |
|--------|--------|----------------------|--------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|        |        | Farming              | Diesel-Oil   | 0,37  | Calculated from share of diesel in sugarcane production                                                                                       | Karimi et al., 2008                                       |
|        |        | Farming (fertilizer) | Natural gas  | 0,22  | Calculated from share of fertilizer in sugarcane production. 90% of energy content of fertilizer is natural gas                               | Karimi et al., 2008; Fadare et al., 2010                  |
|        |        | Processing           | Electricity  | 0,60  |                                                                                                                                               | Van Alfen, 2014, as cited in<br>Ladha-Sabur et al., 2019  |
|        |        | Processing           | Natural gas  | 0,80  | Assumed natural gas as thermal energy                                                                                                         | Van Alfen, 2014, as cited in<br>Ladha-Sabur et al., 2019  |
|        |        | Transport            | Gasoline-Oil | 0,75  | Assumed gasoline for general product with short distance within EU (400 km)                                                                   | Smith et al., 1997, as cited in Ladha-Sabur et al., 2019  |
| Butter | Butter | Ingredient (milk)    | Electricity  | 0,60  | Assumed that milk is 81% of butter content. Value from milk production                                                                        | See Milk                                                  |
|        |        | Ingredient (milk)    | Diesel-Oil   | 1,64  | Assumed that milk is 81% of butter content. Value from milk production                                                                        | See Milk                                                  |
|        |        | Ingredient (milk)    | Gasoline-Oil | 1,13  | Assumed that milk is 81% of butter content. Value from milk production                                                                        | See Milk                                                  |
|        |        | Ingredient<br>(milk) | Natural gas  | 3,27  | Assumed that milk is 81% of butter content. Value from milk production                                                                        | See Milk                                                  |
|        |        | Processing           | Electricity  | 1,21  | Average cheese production in EU                                                                                                               | Wang, 2014, as cited in Ladha-<br>Sabur et al., 2019      |
|        |        | Processing           | Natural gas  | 2,11  | Average cheese production in EU. Assumed natural gas as thermal energy                                                                        | Wang, 2014, as cited in Ladha-<br>Sabur et al., 2019      |
|        |        | Transport            | Gasoline-Oil | 1,70  | Transport within Europe. Assumed gasoline truck                                                                                               | Xu et al., 2009, as cited in<br>Ladha-Sabur et al., 2019  |
| Cheese | Cheese | Ingredient (milk)    | Electricity  | 4,34  | Assumed 90% of cheese is milk and it is required 6.5 kg of milk per kg of cheese (average from different animals). Value from milk production | See Milk                                                  |
|        |        | Ingredient (milk)    | Diesel-Oil   | 11,83 | Assumed 90% of cheese is milk and it is required 6.5 kg of milk per kg of cheese (average from different animals). Value from milk production | See Milk                                                  |
|        |        | Ingredient (milk)    | Gasoline-Oil | 8,19  | Assumed 90% of cheese is milk and it is required 6.5 kg of milk per kg of cheese (average from different animals). Value from milk production | See Milk                                                  |
|        |        | Ingredient (milk)    | Natural gas  | 19,14 | Assumed 90% of cheese is milk and it is required 6.5 kg of milk per kg of cheese (average from different animals). Value from milk production | See Milk                                                  |
|        |        | Processing           | Electricity  | 1,20  |                                                                                                                                               | Foster et al., 2006, as cited in Ladha-Sabur et al., 2019 |
|        |        | Processing           | Natural gas  | 0,46  | Assumed natural gas as thermal energy                                                                                                         | Foster et al., 2006, as cited in Ladha-Sabur et al., 2019 |
| Yogurt | Yogurt | Transport            | Gasoline-Oil | 0,75  | Assumed gasoline for general product with short distance within EU (400 km)                                                                   | Smith et al., 1997, as cited in Ladha-Sabur et al., 2019  |
|        |        | Ingredient (milk)    | Electricity  | 0,67  | Assumed 90% of yogurt production is milk. Value from milk production                                                                          | See Milk                                                  |
|        |        | Ingredient (milk)    | Diesel-Oil   | 1,82  | Assumed 90% of yogurt production is milk. Value from milk production                                                                          | See Milk                                                  |

|                |                  | Ingredient (milk)    | Gasoline-Oil | 1,26 | Assumed 90% of yogurt production is milk. Value from milk production           | See Milk                                                                     |
|----------------|------------------|----------------------|--------------|------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                |                  | Ingredient (milk)    | Natural gas  | 2,94 | Assumed 90% of yogurt production is milk. Value from milk production           | See Milk                                                                     |
|                |                  | Processing           | Electricity  | 1,18 | Average pork sausage                                                           | Carlsson-Kanyama and Faist,<br>2000, as cited in Ladha-Sabur et<br>al., 2019 |
|                |                  | Processing           | Natural gas  | 3,33 | Average pork sausage. Assumed natural gas as thermal energy                    | Carlsson-Kanyama and Faist,<br>2000, as cited in Ladha-Sabur et<br>al., 2019 |
| Processed      | G                | Transport            | Gasoline-Oil | 0,37 | Small distance gasoline truck (200 km) within Germany for sausage delivery     | Arendt and Zanini, 2013, as cited in Ladha-Sabur et al., 2019                |
| meat           | Sausage          | Ingredient (pork)    | Electricity  | 2,71 | Assumed 100% of sausage production is pork. Value from pork production         | See Pork                                                                     |
|                |                  | Ingredient (pork)    | Diesel-Oil   | 2,26 | Assumed 100% of sausage production is pork. Value from pork production         | See Pork                                                                     |
|                |                  | Ingredient (pork)    | Gasoline-Oil | 0,45 | Assumed 100% of sausage production is pork. Value from pork production         | See Pork                                                                     |
|                |                  | Ingredient (pork)    | Natural gas  | 2,36 | Assumed 100% of sausage production is pork. Value from pork production         | See Pork                                                                     |
|                |                  | Processing           | Electricity  | 0,24 | Obtained from cooking oils                                                     | Andersson et al., 1998, as cited in Ladha-Sabur et al., 2019                 |
|                |                  | Processing           | Natural gas  | 3,00 | Assumed boiler works with natural gas                                          | Andersson et al., 1998, as cited in Ladha-Sabur et al., 2019                 |
|                | Olive oil        | Transport            | Gasoline-Oil | 0,75 | Assumed gasoline for general product with short distance within EU (400 km)    | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019                  |
|                |                  | Farming              | Electricity  | 0,24 | Calculated from share of electricity in olive production                       | Balafoutis et al., 2014                                                      |
|                |                  | Farming              | Diesel-Oil   | 0,19 | Calculated from share of diesel in olive production                            | Balafoutis et al., 2014                                                      |
| Cooking<br>oil |                  | Farming (fertilizer) | Natural gas  | 0,71 | Calculated from share of fertilizers (90% natural gas) in olive production     | Balafoutis et al., 2014; Fadare et al., 2010                                 |
| OII            |                  | Processing           | Electricity  | 0,24 | Obtained from cooking oils                                                     | Andersson et al., 1998, as cited in Ladha-Sabur et al., 2019                 |
|                |                  | Processing           | Natural gas  | 3,00 | Assumed boiler works with natural gas                                          | Andersson et al., 1998, as cited in Ladha-Sabur et al., 2019                 |
|                | Sunflower<br>oil | Transport            | Gasoline-Oil | 0,75 | Assumed gasoline for general product with short distance within EU (400 km)    | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019                  |
|                |                  | Farming              | Diesel-Oil   | 1,12 | Calculated from share of electricity in sunflower production                   | Oguz & Yener Onur, 2022                                                      |
|                |                  | Farming (fertilizer) | Natural gas  | 2,86 | Calculated from share of fertilizers (90% natural gas) in sunflower production | Oguz & Yener Onur, 2022                                                      |
| Fruit jam      | Jam              | Processing           | Electricity  | 0,49 |                                                                                | Carlsson-Kanyama & Faist,<br>2000, as cited in Ladha-Sabur et<br>al., 2019   |

|           |                       | Processing           | Natural gas  | 2,01 | Assumed natural gas as thermal energy                                                          | Carlsson-Kanyama & Faist,<br>2000, as cited in Ladha-Sabur et<br>al., 2019 |
|-----------|-----------------------|----------------------|--------------|------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|           |                       |                      | Gasoline-Oil | 0,75 | Assumed gasoline for general product with short distance within EU (400 km)                    | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019                |
|           |                       | Ingredient (fruit)   | Electricity  | 0,31 | Assumed 35% of jam is fruit. Values from fruit production. Not considered international fruits | See Fruits                                                                 |
|           |                       | Ingredient (fruit)   | Diesel-Oil   | 0,03 | Assumed 35% of jam is fruit. Values from fruit production. Not considered international fruits | See Fruits                                                                 |
|           |                       | Ingredient (fruit)   | Gasoline-Oil | 0,23 | Assumed 35% of jam is fruit. Values from fruit production. Not considered international fruits | See Fruits                                                                 |
|           |                       | Ingredient (fruit)   | Natural gas  | 0,27 | Assumed 35% of jam is fruit. Values from fruit production. Not considered international fruits | See Fruits                                                                 |
|           |                       | Ingredient (fruit)   | Marine Fuel  | 0,00 | Assumed 35% of jam is fruit. Values from fruit production. Not considered international fruits | See Fruits                                                                 |
|           | Ingredient<br>(sugar) |                      | Electricity  | 0,49 | Assumed 55% of jam is sugar. Values from sugar production                                      | See Sugar                                                                  |
|           |                       | Ingredient (sugar)   | Diesel-Oil   | 0,52 | Assumed 55% of jam is sugar. Values from sugar production                                      | See Sugar                                                                  |
|           |                       | Ingredient (sugar)   | Gasoline-Oil | 0,41 | Assumed 55% of jam is sugar. Values from sugar production                                      | See Sugar                                                                  |
|           |                       | Ingredient (sugar)   | Natural gas  | 1,71 | Assumed 55% of jam is sugar. Values from sugar production                                      | See Sugar                                                                  |
|           |                       | Processing           | Electricity  | 1,44 | Average chocolate                                                                              | Wojdalski et al., 2015, as cited in Ladha-Sabur et al., 2019               |
|           |                       | Processing           | Natural gas  | 6,70 | Average chocolate. Assumed natural gas as thermal energy                                       | Wojdalski et al., 2015, as cited in<br>Ladha-Sabur et al., 2019            |
| Chocolate | Chocolate             | Transport            | Gasoline-Oil | 0,75 | Assumed gasoline for general product with short distance within EU (400 km)                    | Smith et al., 1997, as cited in Ladha-Sabur et al., 2019                   |
|           |                       | Farming              | Diesel-Oil   | 2,17 | Calculated from share of diesel in cacao production                                            | Pérez Neira, 2016                                                          |
|           |                       | Farming (fertilizer) | Natural gas  | 4,64 | Calculated from share of fertilizers (90% natural gas) in cacao production                     | Pérez Neira, 2016                                                          |
|           |                       | Transport            | Marine Fuel  | 2,75 | Value for general sea vessel in international transportation                                   | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019                |

# Annex 2-3. Beverage.

| Category         | Product          | Process              | Energy<br>form | Energy<br>(MJ/kg) | Comments                                                                                                           | References                                                   |
|------------------|------------------|----------------------|----------------|-------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                  |                  | Processing           | Electricity    | 0,52              | Considered roasted coffee                                                                                          | Wang, 2014, as cited in Ladha-Sabur et al., 2019             |
|                  |                  | Processing           | Natural gas    | 2,00              | Considered roasted coffee. Assumed natural gas as thermal energy                                                   | Wang, 2014, as cited in Ladha-<br>Sabur et al., 2019         |
| Coffee           | Coffee           | Transport            | Gasoline-Oil   | 0,75              | Assumed gasoline for general product with short distance within EU (400 km)                                        | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019  |
|                  |                  | Transport            | Marine fuel    | 2,75              | Value for general sea vessel in international transportation                                                       | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019  |
|                  |                  | Farming              | Diesel-Oil     | 1,67              | Calculated from share of diesel oil in arabica coffee (Brazil) production                                          | De Muner et al., 2015                                        |
|                  |                  | Farming (fertilizer) | Natural gas    | 7,35              | Calculated from share of fertilizers in arabica coffee (Brazil) production. 90% of fertilizers assumed natural gas | De Muner et al., 2015; Fadare et al., 2010                   |
|                  |                  | Processing           | Electricity    | 0,88              |                                                                                                                    | Sharma et al., 2019                                          |
|                  |                  | Processing           | Diesel-Oil     | 19,70             | Assumed diesel as thermal energy used in India production                                                          | Sharma et al., 2019                                          |
|                  | Tea              | Transport            | Gasoline-Oil   | 0,75              | Assumed gasoline for general product with short distance within EU (400 km)                                        | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019  |
| Tea              |                  | Transport            | Marine fuel    | 2,75              | Value for general sea vessel in international transportation                                                       | Smith et al., 1997, as cited in Ladha-Sabur et al., 2019     |
|                  |                  | Farming              | Diesel-Oil     | 0,65              | Calculated from share of diesel in tea production                                                                  | Soheili-Fard & Salvatian, 2015                               |
|                  |                  | Farming (fertilizer) | Natural gas    | 2,07              | Calculated from share of fertilizers in tea production. 90% of fertilizers assumed natural gas                     | Soheili-Fard & Salvatian, 2015;<br>Fadare et al., 2010       |
|                  |                  | Processing           | Electricity    | 0,13              | Bottled water                                                                                                      | Wang, 2014, as cited in Ladha-Sabur et al., 2019             |
| Mineral<br>water | Mineral<br>water | Processing           | Natural gas    | 0,20              | Bottled water. Assumed natural gas as thermal energy                                                               | Wang, 2014, as cited in Ladha-Sabur et al., 2019             |
|                  |                  | Transport            | Gasoline-Oil   | 0,60              | Transport within Europe with gasoline truck                                                                        | Carlsson-Kanyama, 1998, as cited in Ladha-Sabur et al., 2019 |
| Tap water        | Tap<br>water     | All                  | Not defined    | 0,01              | Negligible, it was not considered for calculation                                                                  | Mo et al., 2010                                              |
|                  |                  | Processing           | Electricity    | 0,13              |                                                                                                                    | Wang, 2014, as cited in Ladha-Sabur et al., 2019             |
| Soft             | Soft             | Processing           | Natural gas    | 0,20              | Assumed natural gas as thermal energy                                                                              | Wang, 2014, as cited in Ladha-Sabur et al., 2019             |
| drinks           | drinks           | Transport            | Gasoline-Oil   | 0,75              | Assumed gasoline for general product with short distance within EU (400 km). Assuming 1 kg = 1 l                   | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019  |
|                  |                  | Ingredient           | Electricity    | 0,09              | Soft drink are mainly water, which is negligible. Sugar is considered 10% content. Values from sugar production    | See Sugar                                                    |

|             |                |                                  | 1 -          |       |                                                                                                                    | T = -                                                                     |
|-------------|----------------|----------------------------------|--------------|-------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|             |                | Ingredient                       | Diesel-Oil   | 0,09  | Soft drink are mainly water, which is negligible. Sugar is considered 10% content. Values from sugar production    | See Sugar                                                                 |
|             |                | Ingredient                       | Gasoline-Oil | 0,08  | Soft drink are mainly water, which is negligible. Sugar is considered 10% content. Values from sugar production    | See Sugar                                                                 |
|             |                | Ingredient                       | Natural gas  | 0,31  | Soft drink are mainly water, which is negligible. Sugar is considered 10% content. Values from sugar production    | See Sugar                                                                 |
|             |                | Processing                       | Electricity  | 0,25  | Unconcentrated juice production, assuming 1 kg = 11                                                                | Wang, 2014, as cited in Ladha-<br>Sabur et al., 2019                      |
|             |                | Processing                       | Natural gas  | 0,90  | Unconcentrated juice production, assuming 1 kg = 1 l. Assumed natural gas as thermal energy                        | Wang, 2014, as cited in Ladha-<br>Sabur et al., 2019                      |
|             |                | Transport                        | Gasoline-Oil | 0,75  | Assumed gasoline for general product with short distance within EU (400 km). Assuming $1 \text{ kg} = 11$          | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019               |
| Fruit juice | Fruit<br>juice | Ingredient                       | Electricity  | 1,75  | Assuming not international fruit, using 2 kg of fruit per kg of juice. Values from fruit production                | See Fruits                                                                |
|             | 3              | Ingredient                       | Diesel-Oil   | 0,19  | Assuming not international fruit, using 2 kg of fruit per kg of juice. Values from fruit production                | See Fruits                                                                |
|             |                | Ingredient                       | Gasoline-Oil | 1,34  | Assuming not international fruit, using 2 kg of fruit per kg of juice. Values from fruit production                | See Fruits                                                                |
| I           |                | Ingredient                       | Natural gas  | 1,54  | Assuming not international fruit, using 2 kg of fruit per kg of juice. Values from fruit production                | See Fruits                                                                |
|             |                | Processing                       | Electricity  | 0,80  | Distilled spirits                                                                                                  | Cleland, Earle and Boag, 1981, as cited in Ladha-Sabur et al., 2019       |
|             |                | Processing                       | Natural gas  | 20,00 | Distilled spirits. Assuming natural gas as thermal energy                                                          | Cleland, Earle and Boag, 1981, as cited in Ladha-Sabur et al., 2019       |
| Liquor      | Liquor         | Transport                        | Gasoline-Oil | 0,75  | Assumed gasoline for general product with short distance within EU (400 km). Assuming $1 \text{ kg} = 11$          | Smith et al., 1997, as cited in Ladha-Sabur et al., 2019                  |
|             |                | Raw<br>materials                 | Electricity  | 0,01  | Values for raw materials used in distilled liquor in Mexico. Estimated to show is negligible compared to process   | Martínez et al., 2020                                                     |
|             |                | Raw<br>materials<br>(fertilizer) | Natural gas  | 0,14  | Values for raw materials used in distilled liquor in Mexico. Estimated to show is negligible compared to process   | Martínez et al., 2020                                                     |
|             |                | Processing                       | Electricity  | 0,53  |                                                                                                                    | Cleland, Earle and Boag, 1981,<br>as cited in Ladha-Sabur et al.,<br>2019 |
| Wine        | Wine           | Processing                       | Natural gas  | 1,39  | Assumed natural gas as thermal energy                                                                              | Cleland, Earle and Boag, 1981, as cited in Ladha-Sabur et al., 2019       |
|             |                | Transport                        | Gasoline-Oil | 0,75  | Assumed gasoline for general product with short distance within EU (400 km). Assuming $1 \text{ kg} = 1 \text{ 1}$ | Smith et al., 1997, as cited in<br>Ladha-Sabur et al., 2019               |
| _           |                | Ingredient                       | Electricity  | 0,70  | Calculated from grapes, assuming 1,25 kg of grapes per liter of wine. Values from grape production                 | See Grapes                                                                |

|      |      | Ingredient           | Natural gas  | 0,87 | Calculated from grapes, assuming 1,25 kg of grapes per liter of wine. Values from grape production             | See Grapes                                               |
|------|------|----------------------|--------------|------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|      |      |                      | Electricity  | 0,21 | Calculated from grapes, assuming 1,25 kg of grapes per liter of wine. Values from grape production             | See Grapes                                               |
|      |      | Ingredient           | Diesel-Oil   | 0,14 | Calculated from grapes, assuming 1,25 kg of grapes per liter of wine. Values from grape production             | See Grapes                                               |
|      |      | Ingredient           | Gasoline-Oil | 1,00 | Calculated from grapes, assuming 1,25 kg of grapes per liter of wine. Values from grape production             | See Grapes                                               |
|      |      | Processing           | Electricity  | 0,34 | German beer production                                                                                         | Van Alfen, 2014, as cited in<br>Ladha-Sabur et al., 2019 |
|      |      | Processing           | Natural gas  | 1,03 | German beer production. Assumed natural gas as thermal energy                                                  | Van Alfen, 2014, as cited in<br>Ladha-Sabur et al., 2019 |
| Beer | Beer | Transport            | Gasoline-Oil | 0,75 | Assumed gasoline for general product with short distance within EU (400 km). Assuming 1 kg = 1 L               | Smith et al., 1997, as cited in Ladha-Sabur et al., 2019 |
|      |      | Farming              | Diesel-Oil   | 0,33 | Water negligible, barley is the second main raw material. Content is 73 g per liter. Value from barley farming | Ziaei et al., 2015                                       |
|      |      | Farming (fertilizer) | Natural gas  | 0,32 | Water negligible, barley is the second main raw material. Content is 73 g per liter. Value from barley farming | Ziaei et al., 2015, Fadare et al., 2010                  |

# Annex 2-4. Clothing.

| Category | Product  | Process                                      | Energy form  | Energy<br>(MJ/kg) | Comments                                                                                              | References                                |
|----------|----------|----------------------------------------------|--------------|-------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------|
|          |          | Production (Fiber production - cotton)       | Electricity  | 3,20              | Value from production on textiles                                                                     | Laursen et al., 2007, Velden et al., 2013 |
|          |          | Production                                   | Natural gas  | 6,33              | Value from production on textiles                                                                     | Laursen et al., 2007, Velden et al., 2013 |
|          |          | Production                                   | Diesel-Oil   | 8,21              | Value from production on textiles                                                                     | Laursen et al., 2007, Velden et al., 2013 |
|          |          | Production                                   | Electricity  | 50,00             | Value from production on textiles                                                                     | Laursen et al., 2007, Velden et al., 2013 |
|          |          | Manufacturing (Spinning)                     | Electricity  | 6,30              | Value from "Life cycle assessment of cotton T-shirts in China"                                        | Zhang et al., 2015                        |
|          | T-Shirts | Manufacturing (Knitting)                     | Electricity  | 1,30              | Value from "Life cycle assessment of cotton T-shirts in China"                                        | Zhang et al., 2015                        |
|          | 1-Silits | Manufacturing (Dyeing)                       | Electricity  | 3,90              | Value from "Life cycle assessment of cotton T-shirts in China"                                        | Zhang et al., 2015                        |
|          |          | Manufacturing (Dyeing)                       | Coal         | 90,00             | Assumed that 1kg of Coal contains 20MJ of energy.                                                     | Zhang et al., 2015                        |
|          |          | Manufacturing (Make-<br>up)                  | Electricity  | 6,30              | Value from "Life cycle assessment of cotton T-shirts in China"                                        | Zhang et al., 2015                        |
| Clothes  |          | Manufacturing (Make-<br>up)                  | Coal         | 72,00             | Assumed that Coal 1kg contains 20MJ of energy                                                         | Zhang et al., 2015                        |
|          |          | Transport (From China to Germany)            | Marine fuel  | 24,20             | Primary energy consumption for transportation is 24MJ.                                                | Steinberger et al., 2009                  |
|          |          | Transport (Distribution in Germany)          | Gasoline-Oil | 3,40              | Primary energy consumption for transportation is 3,4MJ.                                               | Steinberger et al., 2009                  |
|          |          | Production (Fiber production - cotton)       | Electricity  | 1,19              | Calculating the energy per kg using a weight of jean pairs of 0.63 kg                                 | Hedman, 2018                              |
|          |          | Manufacturing (Dyeing, Sizing and Finishing) | Natural gas  | 4,19              | Calculating the energy per kg using a weight of jean pairs of 0.63 kg. Assumed 38.3 MJ/m3 natural gas | Hedman, 2018                              |
|          | Jeans    | Manufacturing (Heating)                      | Natural gas  | 29,18             | Calculating the energy per kg using a weight of jean pairs of 0.63 kg. Assumed 38.3 MJ/m3 natural gas | Hedman, 2018                              |
|          |          | Manufacturing (Cutting)                      | Electricity  | 0,80              | Calculating the energy per kg using a weight of jean pairs of 0.63 kg.                                | Hedman, 2018                              |
|          |          | Manufacturing (Sewing)                       | Electricity  | 2,80              | Calculating the energy per kg using a weight of jean pairs of 0.63 kg.                                | Hedman, 2018                              |
|          |          | Manufacturing<br>(Laundry)                   | Electricity  | 13,09             | Calculating the energy per kg using a weight of jean pairs of 0.63 kg                                 | Hedman, 2018                              |

|         | Manufacturing (Other processes)           | Electricity  | 31,37 | Calculating the energy per kg using a weight of jean pairs of 0.63 kg                          | Hedman, 2018             |
|---------|-------------------------------------------|--------------|-------|------------------------------------------------------------------------------------------------|--------------------------|
|         | Manufacturing (Other processes)           | Diesel-Oil   | 70,38 | Calculating the energy per kg using a weight of jean pairs of 0.63 kg. Assumed 43 MJ/kg diesel | Hedman, 2018             |
|         | Manufacturing (Storage)                   | Natural gas  | 0,10  | Calculating the energy per kg using a weight of jean pairs of 0.63 kg                          | Hedman, 2018             |
|         | Manufacturing (Storage)                   | Electricity  | 0,02  | Calculating the energy per kg using a weight of jean pairs of 0.63 kg                          | Hedman, 2018             |
|         | Transport (From China to Germany)         | Marine fuel  | 24,20 | Value assumed from T-Shirt transport                                                           | Steinberger et al., 2009 |
|         | Transport (Distribution in Germany)       | Gasoline-Oil | 3,40  | Value assumed from T-Shirt transport                                                           | Steinberger et al., 2009 |
|         | Production (Fiber production - PES)       | Electricity  | 5,40  | Value from "LCA study of Swedish clothing"                                                     | Sandin et al., 2019      |
|         | Production (Fiber production - PES)       | Diesel-Oil   | 2,20  | Value from "LCA study of Swedish clothing"                                                     | Sandin et al., 2019      |
|         | Production (Fiber production - Polyamide) | Electricity  | 5,40  | Value from "LCA study of Swedish clothing"                                                     | Sandin et al., 2019      |
|         | Production (Fiber production - Polyamide) | Diesel-Oil   | 2,20  | Value from "LCA study of Swedish clothing"                                                     | Sandin et al., 2019      |
|         | Production (Fiber production - Cotton)    | Electricity  | 1,69  | Assuming weight jacket of 0.444 kg, value from jacket production                               | Hedman, 2018             |
| Toolook | Production (Yarn production)              | Electricity  | 34,38 | Value from "LCA study of Swedish clothing"                                                     | Sandin et al., 2019      |
| Jacket  | Manufacturing (Weaving)                   | Electricity  | 88,56 | Value from "LCA study of Swedish clothing"                                                     | Sandin et al., 2019      |
|         | Manufacturing (Dyeing)                    | Electricity  | 0,25  | Value from "LCA study of Swedish clothing"                                                     | Sandin et al., 2019      |
|         | Manufacturing (Dyeing)                    | Diesel-Oil   | 30,00 | Value from "LCA study of Swedish clothing"                                                     | Sandin et al., 2019      |
|         | Manufacturing (Confectioning)             | Electricity  | 32,18 | Value from "LCA study of Swedish clothing"                                                     | Sandin et al., 2019      |
|         | Manufacturing (Confectioning)             | Natural gas  | 0,02  | Value from "LCA study of Swedish clothing"                                                     | Sandin et al., 2019      |
|         | Transport (From China to Germany)         | Marine fuel  | 24,20 | Value assumed from T-Shirt transport                                                           | Steinberger et al., 2009 |
|         | Transport (Distribution in Germany)       | Gasoline-Oil | 3,40  | Value assumed from T-Shirt transport                                                           | Steinberger et al., 2009 |
| Socks   | Production (Fiber production - Polyamide) | Electricity  | 5,40  | Value from "LCA study of Swedish clothing"                                                     | Sandin et al., 2019      |

|  |       | Production (Fiber                               |              |        | Value from "LCA study of Swedish clothing"                   | Sandin et al., 2019      |
|--|-------|-------------------------------------------------|--------------|--------|--------------------------------------------------------------|--------------------------|
|  |       | production -<br>Polyamide)                      | Diesel-Oil   | 2,20   |                                                              |                          |
|  |       | Production (Yarn production)                    | Electricity  | 11,88  | Value from "LCA study of Swedish clothing"                   | Sandin et al., 2019      |
|  |       | Manufacturing (Knitting)                        | Electricity  | 14,94  | Value from "LCA study of Swedish clothing"                   | Sandin et al., 2019      |
|  |       | Manufacturing (Dyeing)                          | Electricity  | 2,52   | Value from "LCA study of Swedish clothing"                   | Sandin et al., 2019      |
|  |       | Manufacturing (Dyeing)                          | Diesel-Oil   | 30,00  | Value from "LCA study of Swedish clothing"                   | Sandin et al., 2019      |
|  |       | Transport (From China to Germany)               | Marine fuel  | 24,20  | Value assumed from T-Shirt transport                         | Steinberger et al., 2009 |
|  |       | Transport (Distribution in Germany)             | Gasoline-Oil | 3,40   | Value assumed from T-Shirt transport                         | Steinberger et al., 2009 |
|  |       | Production (Fiber<br>production -<br>Polyamide) | Electricity  | 5,40   | Value from "LCA study of Swedish clothing"                   | Sandin et al., 2019      |
|  |       | Production (Fiber production - Polyamide)       | Diesel-Oil   | 2,20   | Value from "LCA study of Swedish clothing"                   | Sandin et al., 2019      |
|  |       | Production (Fiber production - Cotton)          | Electricity  | 1,25   | Assuming weight jacket of 0.6 kg, value from shoe production | Hedman, 2018             |
|  | Shoes | Production (Yarn production)                    | Electricity  | 8,59   | Value from "The environmental performance of footwear"       | Zottin, 2019             |
|  | Snoes | Manufacturing (Fabric Mill)                     | Electricity  | 2,19   | Value from "The environmental performance of footwear"       | Zottin, 2019             |
|  |       | Manufacturing (Dyeing)                          | Electricity  | 2,16   | Value from "The environmental performance of footwear"       | Zottin, 2019             |
|  | -     | Manufacturing (Dyeing)                          | Diesel-Oil   | 158,42 | Value from "The environmental performance of footwear"       | Zottin, 2019             |
|  |       | Transport (From China to Germany)               | Marine fuel  | 24,20  | Value assumed from T-Shirt transport                         | Steinberger et al., 2009 |
|  |       | Transport (Distribution in Germany)             | Gasoline-Oil | 3,40   | Value assumed from T-Shirt transport                         | Steinberger et al., 2009 |

# Annex 2-5. Services.

| Category                      | Service                        | Energy<br>form                                 | Energy<br>(kWh/year) | Comments                                                                                                     | References             |  |
|-------------------------------|--------------------------------|------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------|------------------------|--|
| Goods and                     | Maintenance and                | Gasoline                                       | 184,80               | Based on annual energy input, considering 6% maintenance and 2 cars                                          | Mrozik & Merkisz-      |  |
| services for vehicles         | repair of vehicles             | Electricity 6,72                               |                      | Assumed electricity from others. Based on annual energy input, considering 6% maintenance and 2 cars         | Guranowska, 2020       |  |
| Recreation, entertainment and | Recreation and culture         | Electricity                                    | 104,20               | Although diverse energy sources, considered electricity as more expensive source. Considered 2h/day of sport | Jalas & Juntunen, 2015 |  |
| culture                       | Services during vacations      | Electricity                                    | 239,73               | Although diverse energy sources, considered electricity as more expensive source. Considered 2h/day of sport |                        |  |
|                               |                                | Natural gas                                    | 90,78                | Study for pizza chain. Values calculated from average customer considering                                   | Özgen et al., 2021     |  |
|                               |                                | LPG         96,44           Fuel         21,89 |                      | family goes out 4 times per month                                                                            |                        |  |
| Restaurant and                | Restaurant services            |                                                |                      |                                                                                                              |                        |  |
| accommodation                 |                                | Electricity                                    | 0,15                 |                                                                                                              |                        |  |
|                               |                                | Natural gas                                    | 76,60                | Example of UK hotel. Values calculated from average customer. This is                                        | Filimonau et al., 2011 |  |
|                               | Accommodation                  | Electricity                                    | 205,18               | different from vacation services, and considers accommodation for personal, work or school trips             |                        |  |
| Miscellaneous                 | Hairdressing and personal care | Electricity                                    | 239,73               | Although diverse energy sources, considered electricity as more expensive. 1 hour/person during 7 days/year  | Jalas & Juntunen, 2015 |  |

# Annex 2-6. Mobility (direct gasoline consumption).

| Mobility: gasoline car                                                                                         |                                                                    |                             |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|--|--|--|--|--|
| Purpose                                                                                                        | Assumptions                                                        | Reference                   |  |  |  |  |  |
| Work                                                                                                           | Considered two cars and 4.482 km per year each car                 | Follmer et al., 2019 (BMVI  |  |  |  |  |  |
| Education                                                                                                      | 7,3 km per day for 187 school days in a year                       | Mobility in Germany report) |  |  |  |  |  |
| Shopping                                                                                                       | Shopping Considered one car and 486,6 km per year                  |                             |  |  |  |  |  |
| Personal business                                                                                              | Considered one car and 576,6 km per year                           |                             |  |  |  |  |  |
| Leisure                                                                                                        | Considered one car and 4.052,6 km per year (include holiday trips) |                             |  |  |  |  |  |
| Further comments                                                                                               |                                                                    |                             |  |  |  |  |  |
| Considered a gasoline car with a fuel consumption of 7,7 1/100 km and calorific value of gasoline is 8,9 kWh/l |                                                                    |                             |  |  |  |  |  |

Annex 2-7. Product consumption.

| Category     | Product              | Consumption | Unit    | Comment                                                | Reference                               |
|--------------|----------------------|-------------|---------|--------------------------------------------------------|-----------------------------------------|
|              | Fruits               | 200,00      | kg/year | Estimated from own                                     | Statista, 2023                          |
|              | International fruits | 80,00       | kg/year | appreciations and data from Statista for a four-person |                                         |
|              | Vegetables           | 400,00      | kg/year | household in Germany                                   |                                         |
|              | Milk                 | 220,00      | kg/year |                                                        |                                         |
| Fresh foods  | Eggs                 | 60,00       | kg/year |                                                        |                                         |
|              | Beef meat            | 40,00       | kg/year |                                                        |                                         |
|              | Poultry meat         | 52,00       | kg/year |                                                        |                                         |
|              | Pork meat            | 130,00      | kg/year |                                                        |                                         |
|              | Fish                 | 56,00       | kg/year |                                                        |                                         |
|              | Bread and cereals    | 280,00      | kg/year |                                                        |                                         |
|              | Rice                 | 20,00       | kg/year |                                                        |                                         |
|              | Sugar                | 20,00       | kg/year |                                                        |                                         |
|              | Butter               | 25,00       | kg/year |                                                        |                                         |
| Manufactured | Cheese               | 90,00       | kg/year |                                                        |                                         |
| foods        | Yogurt               | 55,00       | kg/year |                                                        |                                         |
|              | Processed meat       | 68,00       | kg/year |                                                        |                                         |
|              | Cooking oil          | 70,00       | kg/year |                                                        |                                         |
|              | Fruit Jam            | 20,00       | kg/year |                                                        |                                         |
|              | Chocolate            | 36,00       | kg/year |                                                        |                                         |
|              | Coffee               | 10,80       | kg/year |                                                        |                                         |
|              | Tea                  | 1,38        | kg/year |                                                        |                                         |
|              | Mineral water        | 490,80      | l/year  |                                                        |                                         |
| Beverages    | Soft drinks          | 392,00      | l/year  |                                                        |                                         |
| Beverages    | Fruit juice          | 152,00      | l/year  |                                                        |                                         |
|              | Liquors              | 6,00        | l/year  |                                                        |                                         |
|              | Wine                 | 41,40       | l/year  |                                                        |                                         |
|              | Beer                 | 183,20      | l/year  |                                                        |                                         |
|              | T-Shirt              | 1,43        | kg/year | Considered 13 pieces with a weight of 110 g/piece      | Forbrig et al., 2020;<br>Statista, 2023 |
|              | Jeans                | 5,67        | kg/year | Considered 9 pieces with a weight of 630 g/piece       |                                         |
| Clothing     | Jacket               | 2,22        | kg/year | Considered 5 pieces with a weight of 444 g/piece       |                                         |
|              | Socks and underwear  | 1,92        | kg/year | Considered 24 pieces with a weight of 80 g/piece       |                                         |
|              | Shoes                | 4,80        | kg/year | Considered 8 pieces with a weight of 600 g/piece       |                                         |